Newton's method

1. Use three steps of Newton's method to approximate a root of the function $f(x) \stackrel{\operatorname{def}}{=} \frac{\sin (x)}{x}+e^{-x}$ starting with $x_{0}=3.0$.

Answer: To ten significant digits, we have 3.0, 3.244843859, 3.266322922, 3.266500425
2. Given that the absolute error at one step of Newton's method is $\left|x_{k}-r\right|$ where r is a root of a function f, demonstrate that the absolute error $\left|x_{k+1}-r\right|$ is proportional to a value multiplied by $\left|x_{k}-r\right|^{2}$ under the assumption that $1<\left|f^{(1)}(x)\right|<2$ in the vicinity of the root, and $\left|f^{(2)}(x)\right|<5$ in the vicinity of the root.

Answer: See the course notes.
3. Use three steps of Newton's method to approximate a root of the function $f(x)=x^{\text {def }}-3 x+1$ starting with $x_{0}=-0.6776507$

Answer: To ten significant digits, we have $-0.6776507,1.000000005,33145927.27,22097284.84$.
4. What is the cause for the sequence of approximations in Question 3?

Answer: The function has a derivative equal to zero when $x=1$, so when x_{1} is approximately equal to one, the derivative is very large.
5. If you continue to iterate Newton's method in Question 3, what root does it converge to?

Answer: To ten significant digits, 1.532088886
6. If you iterated Newton's method in Question 3 but starting with $x_{0}=-0.6$, what root does it converge to?

Answer: To ten significant digits, 0.3472963553 .
7. In general, should you apply Newton's method if you don't already have an idea as to what a root of a function is?

Answer: In general, no. Newton's method is a tool to refine an approximation of a root, not to check if a function has a root. If you start with an arbitrary initial point, it may or may not converge to a root if there is one, so non-convergence does not suggest there is no root.
8. The function x^{2} has a double root at $x=0$. Apply Newton's method starting with the initial value $x_{0}=1$. Is the convergence still $\mathrm{O}\left(h^{2}\right)$?

Answer: No, with a double root, the rate of convergence becomes $\mathrm{O}(h)$.

